"This function computes a confidence interval for a proportion. It is based on inverting the large-sample normal score test for the proportion." (Alan Agresti, who wrote the original R code)
Inputs for success
, total
, and level
are vectorized.
Arguments
- success
Success count.
- total
Total count.
- level
Optional. Confidence level. Defaults to 0.95.
- return_midpoint
Optional. Return midpoint of confidence interval? Defaults to
FALSE
.
Value
Data frame:
success
Success counttotal
Total countestimate
Proportionconf.low
Lower bound of the confidence interval.conf.high
Upper bound of the confidence interval.midpoint
Mid-point of the confidence interval (forreturn_midpoint = TRUE
).level
Confidence level.
See also
http://users.stat.ufl.edu/~aa/cda/R/one-sample/R1/index.html
Agresti A, Coull BA. Approximate is better than "exact" for interval estimation of binomial proportions, Am Stat 1998;52:119-126.
Brown LD, Cai TT, DasGupta A. Interval estimation for a binomial proportion (with discussion), Stat Sci 2001;16:101-133.
Examples
scoreci(success = 5, total = 10)
#> success total estimate conf.low conf.high level
#> 1 5 10 0.5 0.2365931 0.7634069 0.95
scoreci(success = c(5:10), total = 10, level = 0.9)
#> success total estimate conf.low conf.high level
#> 1 5 10 0.5 0.2692718 0.7307282 0.9
#> 2 6 10 0.6 0.3516386 0.8057730 0.9
#> 3 7 10 0.7 0.4416998 0.8731234 0.9
#> 4 8 10 0.8 0.5407928 0.9314420 0.9
#> 5 9 10 0.9 0.6522813 0.9773651 0.9
#> 6 10 10 1.0 0.7870580 1.0000000 0.9